Skip to main content

2019 Belongs to Modi

Those who think BJP has lost its support and people are unhappy might want to hear this.
“People who are making those comments are either middle class or short business class who were saving taxes. The tax component was their earning and now they have lost it. Now here comes data science. Picking data from rural India. How many families have benefited from the cooking gas and electricity? How many have got access to toilets and how many kids are going to school now? When I study this I am getting a figure of fifty crore. Even in forty-fifty crore, being a conservative I divide it by two, it is twenty crore. You know in 2014, the elections were won by a small margin of 1.4 crore and here you have a larger swing. So my calculation says 2019 belongs to Modi.

Comments

Popular posts from this blog

Python and Parquet Performance

In Pandas, PyArrow, fastparquet, AWS Data Wrangler, PySpark and Dask. This post outlines how to use all common Python libraries to read and write Parquet format while taking advantage of  columnar storage ,  columnar compression  and  data partitioning . Used together, these three optimizations can dramatically accelerate I/O for your Python applications compared to CSV, JSON, HDF or other row-based formats. Parquet makes applications possible that are simply impossible using a text format like JSON or CSV. Introduction I have recently gotten more familiar with how to work with  Parquet  datasets across the six major tools used to read and write from Parquet in the Python ecosystem:  Pandas ,  PyArrow ,  fastparquet ,  AWS Data Wrangler ,  PySpark  and  Dask . My work of late in algorithmic trading involves switching between these tools a lot and as I said I often mix up the APIs. I use Pandas and PyArrow for in-RAM comput...

Build Data Platform

I'd appreciate your likes and comments). Additionally, it will result in my lengthiest blog post to date. However, regardless of the length, it's a significant achievement that I'm eager to share with you. I'll refrain from delving into unnecessary details and get straight to the main points to prevent this post from turning into a 100-minute read :). As always, I'll strive to simplify everything to ensure even those who aren't tech-savvy can easily follow along. Why? Everything has a why, this project too. (DevOps for data engineering) and I needed to apply them in an end-to-end project. Of course, this project is not the best one out there, but it helps me to quickly iterate and make errors. (And it reflects the reality of Modern Data Engineering, with beautiful tool icons everywhere). End Goal The end goal of this project is to have a fully functional data platform/pipeline, that will refresh our analytics tables/dashboards daily. The whole infrastructu...

Kubernetes Configuration Provider to load data from Secrets and Config Maps

Using Kubernetes Configuration Provider to load data from Secrets and Config Maps When running Apache Kafka on Kubernetes, you will sooner or later probably need to use Config Maps or Secrets. Either to store something in them, or load them into your Kafka configuration. That is true regardless of whether you use Strimzi to manage your Apache Kafka cluster or something else. Kubernetes has its own way of using Secrets and Config Maps from Pods. But they might not be always sufficient. That is why in Strimzi, we created Kubernetes Configuration Provider for Apache Kafka which we will introduce in this blog post. Usually, when you need to use data from a Config Map or Secret in your Pod, you will either mount it as volume or map it to an environment variable. Both methods are configured in the spec section or the Pod resource or in the spec.template.spec section when using higher level resources such as Deployments or StatefulSets. When mounted as a volume, the contents of the Secr...