Skip to main content

Evaluating Exadata… Does it stack up with RDBMS-Hadoop systems? Part 2

In my earlier blog  I suggested that we could evaluate RDBMS-Hadoop integration architecture using three criteria:
  1. How parallel are the pipes to move data between the RDBMS and the parallel file system;
  2. Is there intelligence to push down predicates; and
  3. Is there more intelligence to push down joins and other relational operators?
But Exadata is a split RDBMS with a parallel file system backing it… how does it measure up by these criteria?
There are effective parallel pipes between the Oracle RAC RDBMS and the Exadata Storage Subsystem… so Exadata passes the first test. Further, Exadata is smart about pushing scan and projection both down to the Storage layer.
Unfortunately there is a fairly severe imbalance between the number of nodes on the RAC side and the number of nodes on the Storage side and this creates a bottleneck. We cannot give Exadata full marks here… but as far as parallel pipes goes it stacks up pretty well.
The ability to push down predicates goes a long way towards solving this as the predicate push-down reduces the amount of data that has to move over the bottleneck. But in every data warehouse there will be queries that return lots of rows from the early execution steps… and Exadata cannot join data in the Storage Subsystem so it tries to pull data up sparingly and push down semi-joins whenever possible… it just cannot be done in every case (Note: in Exadata POCs Oracle will try to ensure that no queries are included that pull lots of data up to the RAC layer… and competitors will try to include queries that expose this weakness…).
So… Oracle also includes some intelligence to push some data down to reduce data movement. There is no way to choose to move data from the RAC layer to the Storage Subsystem and execute the query there… the Storage Subsystem can only scan and project… so again we cannot give Exadata full marks… but it is pretty smart as you will see when we start looking at alternative implementations.
Finally, Exadata cannot effectively split a single query plan across both layers… so no marks at all here.
So Exadata is pretty good… but it has weak spots that will be severe for an important set of DW queries in any implementation.

Comments

Popular posts from this blog

Python and Parquet Performance

In Pandas, PyArrow, fastparquet, AWS Data Wrangler, PySpark and Dask. This post outlines how to use all common Python libraries to read and write Parquet format while taking advantage of  columnar storage ,  columnar compression  and  data partitioning . Used together, these three optimizations can dramatically accelerate I/O for your Python applications compared to CSV, JSON, HDF or other row-based formats. Parquet makes applications possible that are simply impossible using a text format like JSON or CSV. Introduction I have recently gotten more familiar with how to work with  Parquet  datasets across the six major tools used to read and write from Parquet in the Python ecosystem:  Pandas ,  PyArrow ,  fastparquet ,  AWS Data Wrangler ,  PySpark  and  Dask . My work of late in algorithmic trading involves switching between these tools a lot and as I said I often mix up the APIs. I use Pandas and PyArrow for in-RAM comput...

Kubernetes Configuration Provider to load data from Secrets and Config Maps

Using Kubernetes Configuration Provider to load data from Secrets and Config Maps When running Apache Kafka on Kubernetes, you will sooner or later probably need to use Config Maps or Secrets. Either to store something in them, or load them into your Kafka configuration. That is true regardless of whether you use Strimzi to manage your Apache Kafka cluster or something else. Kubernetes has its own way of using Secrets and Config Maps from Pods. But they might not be always sufficient. That is why in Strimzi, we created Kubernetes Configuration Provider for Apache Kafka which we will introduce in this blog post. Usually, when you need to use data from a Config Map or Secret in your Pod, you will either mount it as volume or map it to an environment variable. Both methods are configured in the spec section or the Pod resource or in the spec.template.spec section when using higher level resources such as Deployments or StatefulSets. When mounted as a volume, the contents of the Secr...

Andriod Bug

A bug that steals cash by racking up charges from sending premium rate text messages has been found in Google Play.  Security researchers have identified 32 apps on Google Play that harbour the bug called BadNews. A security firm Lookout, which uncovered BadNews, said that the malicious program lays dormant on handsets for weeks to escape detection.  The malware targeted Android owners in Russia, Ukraine, Belarus and other countries in eastern Europe. 32 apps were available through four separate developer accounts on Google Play. Google has now suspended those accounts and it has pulled all the affected apps from Google Play, it added. Half of the 32 apps seeded with BadNews are Russian and the version of AlphaSMS it installed is tuned to use premium rate numbers in Russia, Ukraine, Belarus, Armenia and Kazakhstan.