Skip to main content

AWS Redshift

The shared-nothing architecture has, from the beginning, offered the promise of using hardware to solve performance problems rather than applying staff and tuning. By this I mean… if you can add nodes and scale out to improve query response then why not throw hardware at performance problems rather than build a fragile infrastructure of aggregate tables, cubes, pre-joined/de-normalized marts, materialized views, indexes, etc. Each of these performance workarounds are both expensive to build and expensive to operate.
There are several reasons, I think tuning has been more popular than scaling. Not in any particular order:
First, hardware vendors made it too hard to order/provision new nodes. You could not just press a button and buy capacity. Vendors wanted to charge you for terabytes when all you wanted might be CPU and Memory to fix the problem (see here, sigh). You had to negotiate a deal with a rep, work through your procurement group, wait weeks for delivery. Then, the hardware you have might not match the hardware for sale. New models could not be mixed with old nodes… so you had to consider a whole new cluster. The process was so not-agile. There have been attempts to fix this… and some of them are credible… but none are popular.
Next, the process to install the new nodes was moderately difficult… not rocket science but not seamless to be sure. Data had to move. Backups had to be reconfigured and sometimes old backups could not be easily restored to the new configuration. There was no easy way to burn in the new hardware and if it failed early there were issues reversing the process. It just was not considered an everyday operational process… it was the exception and that made it tough. This process too has improved over time but it never became a no-brainer.
Finally, buying hardware is a capital expense (CAPEX). Even if you had to pay more in people costs to do the hard work of tuning those were operational expenses… and funding was easier to get.
Redshift changes the game here. Even if the Paraccel database is just OK (see here)… and if the overhead of running in the virtualized AWS environment makes it worse… it is still OK. You can provision new hardware in a couple of minutes. If Teradata is 25% faster than Paraccel for your query set… so what? You can add 25% more Redshift for a fraction of the extra cost of Teradata. Need more performance? Dial it in. Need permission? No problem because it is all OPEX dollars.
Redshift will deliver the flexibility to make scale out less expensive than tune it out. The TCO reductions from running a simple system where hardware solves performance problems instead of ETL and staff will be significant. This is how it always should have been.
The issue for Redshift will be… given the trend to reduce the data latency from operations to BI… can you move significant amounts of data from on-premise into the cloud fast enough to meet service level agreements?
Do not overlook Redshift… Amazon could be a player in the EDW space… But look for other databases to make inroads here as well. In-memory databases could work well in the cloud as they avoid some of the hardware abstraction required to access disks.

Related articles

Comments

Popular posts from this blog

Python and Parquet Performance

In Pandas, PyArrow, fastparquet, AWS Data Wrangler, PySpark and Dask. This post outlines how to use all common Python libraries to read and write Parquet format while taking advantage of  columnar storage ,  columnar compression  and  data partitioning . Used together, these three optimizations can dramatically accelerate I/O for your Python applications compared to CSV, JSON, HDF or other row-based formats. Parquet makes applications possible that are simply impossible using a text format like JSON or CSV. Introduction I have recently gotten more familiar with how to work with  Parquet  datasets across the six major tools used to read and write from Parquet in the Python ecosystem:  Pandas ,  PyArrow ,  fastparquet ,  AWS Data Wrangler ,  PySpark  and  Dask . My work of late in algorithmic trading involves switching between these tools a lot and as I said I often mix up the APIs. I use Pandas and PyArrow for in-RAM comput...

Kubernetes Configuration Provider to load data from Secrets and Config Maps

Using Kubernetes Configuration Provider to load data from Secrets and Config Maps When running Apache Kafka on Kubernetes, you will sooner or later probably need to use Config Maps or Secrets. Either to store something in them, or load them into your Kafka configuration. That is true regardless of whether you use Strimzi to manage your Apache Kafka cluster or something else. Kubernetes has its own way of using Secrets and Config Maps from Pods. But they might not be always sufficient. That is why in Strimzi, we created Kubernetes Configuration Provider for Apache Kafka which we will introduce in this blog post. Usually, when you need to use data from a Config Map or Secret in your Pod, you will either mount it as volume or map it to an environment variable. Both methods are configured in the spec section or the Pod resource or in the spec.template.spec section when using higher level resources such as Deployments or StatefulSets. When mounted as a volume, the contents of the Secr...

Andriod Bug

A bug that steals cash by racking up charges from sending premium rate text messages has been found in Google Play.  Security researchers have identified 32 apps on Google Play that harbour the bug called BadNews. A security firm Lookout, which uncovered BadNews, said that the malicious program lays dormant on handsets for weeks to escape detection.  The malware targeted Android owners in Russia, Ukraine, Belarus and other countries in eastern Europe. 32 apps were available through four separate developer accounts on Google Play. Google has now suspended those accounts and it has pulled all the affected apps from Google Play, it added. Half of the 32 apps seeded with BadNews are Russian and the version of AlphaSMS it installed is tuned to use premium rate numbers in Russia, Ukraine, Belarus, Armenia and Kazakhstan.